

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ЭКОЛОГИЧЕСКОЙ ПОЛИТИКЕ И ПРИРОДНЫМ РЕСУРСАМ ПРИ ГЛАВЕ ДОНЕЦКОЙ НАРОДНОЙ РЕСПУБЛИКИ (ГОСКОМЭКОПОЛИТИКИ ПРИ ГЛАВЕ ДОНЕЦКОЙ НАРОДНОЙ РЕСПУБЛИКИ)

ПРИКАЗ

15 шоня 2021 г.

Донецк

No 359

Об утверждении Методики разработки нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей

С целью разработки нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей, руководствуясь пунктом 2 Постановления Правительства Донецкой Народной Республики от 04.06.2021 г. № 36-4 «Об утверждении нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей», статьей 23 Закона Донецкой Народной Республики «Об охране окружающей среды», подпунктами 4.1.10., 4.1.23 пункта 4.1. Положения о Государственном комитете по экологической политике и природным ресурсам при Главе Донецкой Народной Республики, утвержденного Указом Главы Донецкой Народной Республики от 23.01.2017 г. № 07,

ПРИКАЗЫВАЮ:

- 1. Утвердить Методику разработки нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей (прилагается).
 - 2. Контроль за исполнением настоящего Приказа оставляю за собой.
- 3. Настоящий Приказ вступает в силу со дня официального опубликования.

Председатель

Muun

Р.В. Кишкань

УТВЕРЖДЕНА

Приказом Госкомэкополитики при Главе Донецкой Народной Республики

OT 15 WORG 2021 № 359

МЕТОДИКА РАЗРАБОТКИ НОРМАТИВОВ ДОПУСТИМЫХ СБРОСОВ ВЕЩЕСТВ И МИКРООРГАНИЗМОВ В ВОДНЫЕ ОБЪЕКТЫ ДЛЯ ВОДОПОЛЬЗОВАТЕЛЕЙ

І. Общие положения

- 1.1. Методика разработки нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей (далее Методика) разработана с целью осуществления расчета нормативов допустимых сбросов веществ и микроорганизмов водопользователями в водные объекты.
 - 1.2. В настоящей Методике термины имеют следующее значение:

лимитирующий признак вредности в водном объекте — признак характеризующийся наименьшей безвредной концентрацией в водном объекте;

неконсервативное вещество – вещество, концентрация которого изменяется вследствие последующих химических, физико-химических и биологических процессов.

Иные термины, которые используются в настоящей Методике, употребляются в значениях, предусмотренных законодательством в сфере охраны окружающей среды и водным законодательством Донецкой Народной Республики.

- 1.3. Нормирование качества воды осуществляется в соответствии с физическими, химическими, биологическими (в том числе микробиологическими) и иными показателями состава и свойств воды водных объектов, определяющими пригодность ее для конкретных целей водопользования и/или устойчивого функционирования экологической системы водного объекта.
 - 1.4. Нормативы качества воды водного объекта включают:
- а) общие требования к составу и свойствам поверхностных вод для видов водопользования;
 - б) перечень предельно допустимых концентраций (ПДК) веществ в воде

водных объектов культурно-бытового, хозяйственно-питьевого водопользования;

- в) нормативы качества воды водных объектов рыбохозяйственного значения, в том числе нормативы ПДК загрязняющих веществ в водах водных объектов рыбохозяйственного значения.
- 1.5. При сбросе сточных, в том числе дренажных вод (далее сточные воды), в водные объекты, используемые для целей питьевого, хозяйственно-бытового назначения и рыбохозяйственного значения, нормативы качества поверхностных вод или их природные состав и свойства должны соблюдаться на протяжении всего участка водопользования, начиная с контрольного створа, но не далее, чем 500 метров от места сброса сточных вод.
- 1.6. В случае одновременного использования водного объекта или его участка для различных целей водопользования для состава и свойств его вод принимаются наиболее жесткие нормы качества воды из числа установленных.
- 1.7. При разработке нормативов допустимых сбросов веществ и микроорганизмов (далее НДС) необходимо учитывать следующее:
- а) если нормативы качества воды в водных объектах не могут быть достигнуты в самом водном объекте, то НДС устанавливаются исходя из условий соблюдения природного фона в контрольном створе (до точки сброса);
- б) если загрязненность водного объекта в фоновом створе по каким-либо показателям не позволяет обеспечить нормативное качество воды в контрольном створе (до точки сброса), то НДС по этим показателям разрабатываются исходя из отнесения нормативных требований к составу и свойствам воды водных объектов к самим сточным водам;
 - в) учитываются нормативы качества воды водных объектов;
- г) НДС устанавливаются в виде допустимых приращений к концентрации данных веществ в воде, которая забирается (используется) при сбросе теплообменных вод (использованных в охлаждающих системах для охлаждения технологического продукта без соприкосновения с ним), а также водных объектов, используемых для рыборазведения (без привноса загрязняющих веществ). Показатели таких приращений устанавливаются только за счет технологических потерь воды на испарение и при условии использования одного водного объекта.

При сбросе теплообменных и иных нормативно чистых сточных вод, образующихся после использования воды другого водного объекта или источника, в водном объекте, который принимает эти сточные воды, НДС устанавливаются в соответствии с подпунктами а)-в) настоящего пункта;

д) для веществ, содержащихся в воде водного объекта и относящихся к 1 и 2 классам опасности, при всех видах водопользования с одинаковым лимитирующим признаком вредности (ЛПВ), сумма отношений концентраций каждого вещества к соответствующим ПДК не должна превышать 1.

- 1.8. НДС не разрабатываются для сточных вод, которые сбрасываются в канализационные сети.
- 1.9. Если фактический сброс (НДС $_{\phi a \kappa \tau}$) водопользователя меньше расчетного НДС, то в качестве НДС принимается фактический сброс.
- 1.10. Критерии эффективности обеззараживания сточных вод, отводимых в водные объекты, и допустимые изменения состава воды в водоемах и водотоках после выпуска в них очищенных сточных вод, устанавливаются в соответствии с СанПиН №4630-88. Санитарные правила и нормы охраны поверхностных вод от загрязнения.

II. Методическая основа расчета нормативов допустимых сбросов

- 2.1. Расчет НДС для расчетного водохозяйственного участка приведен в разделе III настоящей Методики для водотоков, в разделе IV настоящей Методики для водохранилищ и озер, в разделе V настоящей Методики для морских вод.
- 2.2. Расчет НДС без учета разбавления в водном объекте производится в случае осуществления водопользования несколькими водопользователями на протяжении 1 км. Кроме того, расчет НДС с учетом разбавления осуществляется водопользователями после формирования исходной информации, требующейся для расчета.
- 2.3. Расход сбрасываемых сточных вод устанавливается с учетом сброса за последние три года (среднегодовое значение).

III. Расчет величин НДС для отдельных выпусков сточных вод в водотоки

3.1. НДС рассчитываются для всех категорий водопользователей как произведение максимального часового расхода сточных вод q (m^3/v), на допустимую концентрацию загрязняющего вещества $C_{HДC}$ ($mr/дm^3$). При расчете условий сброса сточных вод, сначала определяется значение $C_{HДC}$, обеспечивающее нормативное качество воды в контрольных створах с учетом требований настоящей Методики, затем определяется НДС согласно формуле:

$$HДC = q \cdot C_{HЛC};$$
 (1)

Последовательность выполнения расчета величин НДС для отдельных выпусков сточных вод в водотоки представлена в Приложении 1 к настоящей Методике. Примерный расчет НДС (без учета разбавления и выполнения расчета фоновой концентрации) представлен в Приложении 2 к настоящей Методике.

Необходимо подчеркнуть обязательность требования увязки сброса массы вещества, соответствующей НДС, с расходом сточной воды.

Если фоновая концентрация загрязняющего вещества в водном объекте

превышает ПДК, то $C_{H\!J\!C}$ определяется в соответствии с пунктом 1.7. настоящей Методики. В противном случае для определения $C_{H\!J\!C}$ в зависимости от типа водного объекта используются расчетные формулы, приведенные в разделе III настоящей Методики.

3.2. Расчетная формула для определения $C_{H\!J\!C}$ без учета неконсервативности вещества имеет вид:

$$C_{HJIC} = n \cdot (C_{\Pi JIK} - C_{\Phi}) + C_{\Phi}; \tag{2}$$

гле:

 C_{Φ} - фоновая концентрация загрязняющего вещества в водотоке выше выпуска сточных вод, мг/дм³;

n - кратность общего разбавления сточных вод в водотоке, равная произведению кратности начального разбавления n_H на кратность основного разбавления n_O (основное разбавление, возникающее при перемещении воды от места выпуска к расчетному створу)

$$n = n_H \cdot n_O \,; \tag{3}$$

Определение норматива допустимого сброса по концентрации взвешенных веществ, производится следующим образом:

Для водных объектов рыбохозяйственного значения -

при сбросе сточных вод, в водные объекты содержание взвешенных веществ в контрольном створе не должно увеличиваться по сравнению с фоновым содержанием более чем на 0,75 мг/дм³. В водных объектах рыбохозяйственного значения при содержании в межень более 30 мг/дм³ природных взвешенных веществ допускается увеличение содержания их в воде в пределах 5 %;

Для водных объектов в пунктах хозяйственно-питьевого и культурнобытового водопользования -

при сбросе сточных вод в водный объект содержание взвешенных веществ в контрольном створе не должно увеличиваться по сравнению с фоновым содержанием более чем на $0.25~\rm mr/дm^3$. Для водных объектов, содержащих в межень более $30~\rm mr/дm^3$ природных взвешенных веществ, допускается увеличение содержания их в воде в пределах 5~%.

3.3. По методу Н.Н. Лапшева кратность начального разбавления n_H учитывается при выпуске сточных вод в водотоки в следующих случаях:

для напорных сосредоточенных и рассеивающих выпусков в водоток при соотношении скоростей ϑ_p и выпуска ϑ_{cm} :

$$\vartheta_{cm} \ge 4 \cdot \vartheta_p \,; \tag{4}$$

где:

 ϑ_{cm} – скорость истечения сточных вод, м/с;

 ϑ_P - скорость движения воды водотока, м/с;

при абсолютных скоростях истечения струи из выпуска, больших 2 M/c. При меньших скоростях расчет начального разбавления не производится.

Для единичного напорного выпуска кратность начального разбавления рассчитывается следующим образом: вычисляются отношения

$$\frac{\vartheta_0}{\vartheta_P} = \frac{\vartheta_P + 0.15}{\vartheta_P} - 1; \qquad m = \frac{\vartheta_P}{\vartheta_{cm}}; \tag{5}$$

где:

 ϑ_0 – скорость на оси струи. По рисунку 1 номограммы (Приложение 3) находится отношение $\frac{d}{d_0}$, где d – диаметр загрязненного пятна в граничном створе зоны начального разбавления, d_0 – диаметр выпуска;

т – отношение скоростей.

По рисунку 2 номограммы (Приложение 3) находится кратность начального разбавления n_H по известным величинам m и $\frac{d}{d_0}$.

Для рассеивающего напорного выпуска расчет осуществляется следующим образом. Задаваясь числом выпускных отверстий оголовка выпуска N_0 и скоростью истечения сточных вод, из них $\vartheta_{cm} \geq 2,0$ м/c, определяют диаметр отверстия или оголовка рассеивающего выпуска:

$$d_0 = \sqrt{\frac{4 \cdot q_1}{\pi \cdot \vartheta_{cm} \cdot N_0}} \; ; \tag{6}$$

где:

 $d_0\,$ – диаметр отверстия или оголовка рассеивающего выпуска, м;

q1 – суммарный расход сточных вод, m^3/c ;

 N_0 – число выпускных отверстий оголовка выпуска.

По рисунку 1 номограммы (Приложение 3) определяется отношение $\frac{a}{ds}$ и найденное значение d сравнивается со средней глубиной реки H. Если d < H, то по рисунку 2 номограммы (Приложение 3) находится кратность начального разбавления n_H . Для случая естественной струи (d > H) соответствующая ему кратность разбавления n_H находится умножением найденного значения n_H на поправочный коэффициент $f\left(\frac{H}{d}\right)$, который определяется по рисунку 3 номограммы (Приложение 3). Расстояние до пограничного сечения зоны разбавления определяется по формуле: $l_H = \frac{d}{0,48\cdot(1-3,12\cdot m)} \; ;$

$$l_H = \frac{d}{0.48 \cdot (1 - 3.12 \cdot m)} \; ; \tag{7}$$

Расход смеси сточных вод, и воды водотока в том же сечении находится по формуле:

$$q_{\scriptscriptstyle CM} = n_H \cdot q^2; \tag{8}$$

 q^2 – расход сточных вод, на выходе из отверстий или оголовков рассеивающего выпуска, м³/с.

Средняя концентрация вещества в граничном сечении определяется по формуле:

$$C_{cp} = C_{\phi} + \frac{c_{cm} - c_{\phi}}{n_H} ; \qquad (9)$$

 C_{cm} – концентрация загрязняющего вещества в сточных водах, мг/дм³. Максимальная концентрация в центре пятна примеси в сечении равна:

$$C_{\text{\tiny MAKC}} = \frac{C_{cp}}{0.428} \; ; \tag{10}$$

Кратность основного разбавления n_0 определяется по методу В.А. Фролова – И.Д. Родзиллера:

$$n_0 = \frac{q + \gamma \cdot Q}{q}; \tag{11}$$

Q – расчетный расход водотока, M^3/c ;

у – коэффициент смешивания, показывающий, какая часть речного расхода смешивается со сточными, в том числе дренажными водами, в максимально загрязненной струе расчетного створа:

$$\gamma = \frac{1 - e^{-\alpha \sqrt[3]{l}}}{1 + \frac{Q}{q} e^{-\alpha \sqrt[3]{l}}}; \tag{12}$$

l – расстояние от выпуска до расчетного створа по фарватеру, м;

е — основание натурального логарифма, математическая константа;

 α – коэффициент, учитывающий гидравлические условия в реке:

$$\alpha = \varphi \cdot \xi \cdot \sqrt[3]{\frac{D}{q}}; \tag{13}$$

где:

 φ – коэффициент извилистости (отношение расстояния до контрольного створа по фарватеру к расстоянию по прямой);

 ξ – коэффициент, зависящий от места выпуска сточных вод, (при выпуске у берега $\xi = 1$, при выпуске в стрежень реки $\xi = 1.5$);

D – коэффициент турбулентной диффузии, м 2 /с.

Для летнего времени:

$$D = \frac{g \cdot \vartheta \cdot H}{37 \cdot n_{ov} \cdot C^2}; \tag{14}$$

гле:

g – ускорение свободного падения, $g = 9.81 \text{ м/c}^2$;

 θ – средняя скорость течения реки, M/C;

H – средняя глубина реки, M;

 n_{u} – коэффициент шероховатости ложа реки, определяемый по справочным данным, по таблице М.Ф. Срибного (Приложение 1);

C – коэффициент Шези ($M^{0,5}/c$), определяемый по формуле Н.Н. Павловского (при $H \le 5 M$):

$$C = \frac{R^{y}}{n_{yy}}; (15)$$

$$R^{\mathrm{y}}$$
 – гидравлический радиус потока, M ($R \approx H$);
$$\mathrm{y} = 2.5 \sqrt{n_{\mathrm{u}}} - 0.13 - 0.75 \sqrt{R} (\sqrt{n_{\mathrm{u}}} - 0.1) \tag{16}$$

Для зимнего времени (периода ледостава):

$$D = \frac{g \cdot \vartheta \cdot R_{np}}{37 \cdot n_{np} \cdot C_{np}^2}; \tag{17}$$

где:

 R_{np} , n_{np} , C_{np} — приведенные значения гидравлического радиуса, коэффициента шероховатости и коэффициента Шези;

$$R_{np} = 0.5 \cdot H; \tag{18}$$

$$n_{np} = n_{uu} \left[1 + \left(\frac{n_{u}}{n_{uu}} \right)^{1,5} \right]^{0,67}; \tag{19}$$

где:

 n_{π} — коэффициент шероховатости нижней поверхности льда по П.Н. Белоконю, определяемый по справочным данным (Приложение 1 к настоящей Методике).

$$C_{np} = \frac{R_{np}^{ynp}}{n_{np}}; (20)$$

где:

$$y_{np} = 2.5\sqrt{n_{np}} - 0.13 - 0.75\sqrt{R_{np}}(\sqrt{n_{np}} - 0.1);$$
 (21)

Для повышения точности расчетов вместо средних значений ϑ , H, n_{u} u C рекомендуется брать их значения в зоне непосредственного смешения сточной жидкости с речной водой.

Рассмотренный метод может применяться при соблюдении следующего неравенства:

$$0,0025 \le \frac{q}{o} \le 0,1; \tag{22}$$

Если сточные воды и притоки могут поступать с обоих берегов реки, обеспечивая практически постоянную струйность речных вод вдоль каждого берега, то для расчетов концентраций веществ в максимально загрязненной струе рекомендуется использовать метод В.А. Фролова — И.Д. Родзиллера для случая впадения сточных вод, с обоих берегов реки.

3.5. Если не соблюдаются условия применимости метода В.А. Фролова – И.Д. Родзиллера или в расчете необходимо учесть данные о накоплении загрязняющих веществ в донных отложениях, то рекомендуется использовать методы, изложенные в монографии «Методические основы оценки и регламентирования антропогенного влияния на качество поверхностных вод» под редакцией А.В. Караушева.

IV. Расчет НДС для отдельных выпусков в водохранилища и озера

4.1. НДС для выпусков сточных вод в водохранилища и озера определяются по приведенным ниже расчетным формулам, аналогичным формулам пункта 3.2. настоящей Методики.

Последовательность выполнения расчета величин НДС для отдельных выпусков сточных вод в водохранилища и озера представлена в Приложении 4 к настоящей Методике.

Основная расчетная формула для определения $C_{H\!J\!C}$ без учета неконсервативности вещества имеет вид:

$$C_{H \square C} = n \cdot (C_{\Pi \square K} - C_{\Phi}) + C_{\Phi}; \tag{23}$$

гле:

 C_{ϕ} - фоновая концентрация загрязняющего вещества в воде водоема, мг/дм³;

n - кратность общего разбавления сточных вод, в водоеме, определяемая по формуле (3).

Для выполнения расчета НДС по взвешенным веществам рекомендуется использовать формулы из раздела III настоящей Методики.

4.2. Расчет кратности начального разбавления n_H выполняется согласно пункту 3.3. настоящей Методики. Расчет кратности основного разбавления n_O производится следующим образом:

$$n_0 = \frac{\varphi(Z_1)}{\gamma_0 \cdot Z_2};\tag{24}$$

где:

$$Z_1 = \frac{l + x_0}{x^* + x_0};\tag{25}$$

$$Z_2 = \frac{q \cdot n_{\scriptscriptstyle H}}{U_{M} \cdot H_{cp}^2};\tag{26}$$

$$\varphi(Z_1) = \begin{cases} Z_1 \, ecnu \, Z_1 \le 1 \\ \sqrt{Z_1} \, ecnu \, Z_1 > 1 \end{cases}; \tag{27}$$

$$x^* = \frac{U_{M} \cdot H_{Cp}^2}{4\pi D} - x_0, \tag{28}$$

$$x_{0} = \begin{cases} \frac{q^{2} \cdot n_{H}^{2}}{4 \cdot \pi \cdot D \cdot U_{M} \cdot H_{Cp}^{2}} - l_{H}, ecnu Z_{2} \leq 1\\ \frac{q \cdot n_{H}}{4\pi D} - l_{H}, ecnu Z_{2} > 1 \end{cases};$$
(29)

$$\gamma_0 = 1 + e^{\frac{U_M \cdot l_0^2}{D \cdot (l + x_0)}}; \tag{30}$$

где:

 $\varphi(Z_1)$ - угол наклона оголовка выпуска;

 x^* - параметр сопряжения участка двухмерной диффузии с участком трехмерной диффузии;

 x_0 - параметр сопряжения начального участка разбавления с основным участком;

 γ_0 - параметр, учитывающий влияние ближайшего берега на кратность основного разбавления;

 $U_{\rm M}$ – характерная минимальная скорость течения в водоеме в месте сброса, соответствующая неблагоприятной гидрологической ситуации, м/с;

 l_0 - расстояние выпуска от ближайшего берега, м;

 $l_{\scriptscriptstyle H}$ - длина начального участка разбавления, рассчитываемая по формуле (7), м;

l – расстояние от выпуска до расчетного створа по фарватеру, м;

D - коэффициент турбулентной диффузии, м²/с, определяемый по формулам (14) и (17), в которых вместо средней скорости течения, глубины и коэффициента шероховатости ложа реки принимаются, соответственно, характерная минимальная скорость течения в водоеме U_{M} , средняя глубина водоема вблизи выпуска H_{cp} и коэффициент шероховатости ложа водоема в зоне течения n_{w} .

V. Расчет НДС для отдельных выпусков, сбросов в морские воды

- 5.1. Расчет НДС веществ для выпусков сточных вод в море производится в тех случаях, когда допускается отведение сточных вод в морскую среду, при этом НДС определяются в соответствии с пунктом 3.1. настоящей Методики по приведенным ниже формулам.
- 5.2. Выпуск, удаленный от других выпусков на расстояние более 5 км вдоль линии берега, может рассматриваться как отдельный (изолированный выпуск).
- 5.3. С учетом разбавления сточных вод, в морских водах, концентрация вещества в сточных водах $C_{H\!J\!C}$ определяется по формуле:

$$C_{HJC} = n \cdot (C_{\Pi JK} - C_{\phi}) + C_{\phi} \,. \tag{31}$$

где:

- n кратность общего разбавления сточных вод в море при их переносе течением от места выпуска до ближайшей границы морских районов водопользования;
- C_{Φ} фоновая концентрация вещества, характеризующая степень загрязнения морской воды данным веществом вне зоны влияния выпуска сточных вод (на расстоянии более 5 км от выпуска), мг/дм³.

Последовательность выполнения расчета величин НДС для отдельных выпусков, сбросов в морские воды представлена в Приложении 5 настоящей Метолики.

- 5.4. Кратность общего разбавления *n* определяется по формуле (3) и зависит от гидрологических условий района размещения выпуска сточных вод и его конструктивных характеристик. Поэтому при установлении НДС следует учитывать возможность оптимизации конструкции оголовка и места выпуска сточных вод, для уменьшения затрат на очистку сточных вод.
- 5.5. Известные методики определения кратности начального разбавления позволяют производить расчет ее значения независимо от типа выпуска (сосредоточенный или рассеивающий), поскольку конструкции выпусков обеспечивают отсутствие взаимного влияния струй сточных вод в зоне начального разбавления.

На процесс перемешивания сточных вод в этой зоне существенное влияние оказывают силы плавучести, если плотность сточных вод существенно отличается

от плотности морской воды. По этой причине применяют разные методы расчета кратности начального разбавления в зависимости от величины числа Фруда:

$$F_r = \frac{\vartheta_{CT}}{\sqrt{\frac{g \cdot d_0}{\rho_M} |\rho_M - \rho_{CT}|}};$$
(32)

где:

 d_0 - диаметр выпускного отверстия, м;

g - ускорение силы тяжести, равное 9,81 м/с;

 $\rho_{\rm M}$ - плотность морской воды в месте сброса сточных вод, т/м³;

 ho_{cm} - плотность сточной, в том числе дренажной воды, т/м 3 ;

 $\theta_{\rm CT}$ - скорость истечения сточной, в том числе дренажной воды, из выпускного отверстия (м/с), вычисляемая по расходу сточных вод,:

$$\vartheta_{\rm CT} = \frac{4 \cdot q}{N_0 \cdot \pi \cdot d_0^2};\tag{33}$$

где:

q - расход сточных вод, $\text{м}^3/\text{c}$;

No - число выпускных отверстий оголовка выпуска.

5.6. Если сточная, в том числе дренажная вода, легче морской $(p_{cm} < \rho_{\rm M})$ и расчетная величина Fr удовлетворяет условию:

$$F_r \le 1.12 \frac{H_B}{d_0};$$
 (34)

где:

 H_B - расстояние (по вертикали) от выпуска до поверхности моря, м, то кратность начального разбавления можно определить по формуле Рама-Цедервала:

$$n_H = 0.54 \cdot F_r \cdot \left(\frac{0.38 \cdot H_B}{d_0 \cdot F_r} + 0.66\right)^{1.67};$$
 (35)

5.7. Если сточная, в том числе дренажная вода, тяжелее морской $(p_{cm} > \rho_{\rm M})$ и расчетная величина Fr удовлетворяет условию:

$$F_r \le \frac{0.434 \cdot H_B}{d_0 \cdot (\sin \varphi)^{1.5}}$$
; (36)

где

 ϕ - угол истечения струй сточных вод, из выпускного отверстия относительно горизонта.

Расчет кратности начального разбавления выполняется по методике Н.Н. Лапшева:

$$n_H = 0.524 \cdot \cos \varphi \cdot \sqrt{\sin \varphi} \cdot F_r \cdot F; \tag{37}$$

где F - параметр, зависящий от угла φ и определяемый по таблице 1 – значение функции F при различных углах наклона φ оголовка выпуска. (Приложение 6).

5.8. Если сточная, в том числе дренажная вода, легче морской, но не выполняется условие (34), или сточная, в том числе дренажная вода, тяжелее морской, но не выполняется условие (36), или же плотность сточной, в том числе дренажной воды, равна плотности морской воды в месте сброса, расчет кратности начального разбавления выполняется методом Н.Н. Лапшева:

$$n_{\rm H} = \frac{0.425 \cdot \vartheta \operatorname{ct} \cdot f}{0.051 + \cdot \vartheta \operatorname{M}};\tag{38}$$

где:

 ϑ м - характерная минимальная скорость течения морских вод в месте сброса, м/с;

f - параметр, учитывающий стеснение струи сточных вод при их сбросе на мелководье.

Параметр f определяется следующим способом. Вычисляется сначала диаметр струи сточных вод, d в конце зоны начального разбавления по формуле:

$$d = \theta_{cm} \cdot d_0 \cdot \sqrt{\frac{38,6 \cdot \left(1 - \frac{\theta_M}{\theta_{cm}}\right)}{0,051 + \theta_M}} ; \tag{39}$$

Если значение d не превышает глубины моря в месте сброса H, то f=1, в противном случае:

$$f = 1,825 \frac{H}{d} - 0,781 \frac{H^2}{d^2} - 0,0038; \tag{40}$$

- 5.9. При наличии устойчивой стратификации морской среды по плотности для расчета кратности начального разбавления могут использоваться модели, описывающие поведение струи в стратифицированной среде.
- 5.10. В любом случае, если расчетная кратность начального разбавления n_H окажется меньше 1, то для дальнейших вычислений следует принять $n_H = 1$.
- 5.11. Расчеты кратности основного разбавления основаны на решении уравнения турбулентной диффузии и могут выполняться численным или аналитическим методами.

Численный метод решения уравнения турбулентной диффузии подробно рассмотрен в монографии под редакцией А.В. Караушева (пункт 3.5. настоящей Методики). Расчет кратности основного разбавления может также быть проведен с использованием аналитического решения уравнения турбулентной диффузии для сосредоточенного выпуска сточных вод, в море:

$$n_0 = \frac{\varphi(Z_1)}{\gamma_0 \cdot Z_2} \,; \tag{41}$$

где:

$$Z_1 = \frac{l + x_0}{x^* + x_0};\tag{42}$$

$$Z_2 = \frac{q \cdot n_H \sqrt{D_B}}{U_M \cdot H_{CP}^2 \sqrt{D_\Gamma}}; \tag{43}$$

$$\varphi(Z_1) = \begin{cases} Z_1, ecnu \ Z_1 \le 1\\ \sqrt{Z_1}, ecnu \ Z_1 > 1 \end{cases}$$

$$\tag{44}$$

$$x^* = \frac{U_M \cdot H_{CP}^2}{4 \cdot \pi \cdot D_B} - x_0, \tag{45}$$

$$x_{0} = \begin{cases} \frac{q^{2} \cdot n_{H}^{2}}{4 \cdot \pi \cdot D_{I} \cdot U_{M} \cdot H_{cp}^{2}} - l_{H}, ecnu Z_{2} \leq 1\\ \frac{q \cdot n_{H}}{4 \cdot \pi \sqrt{D_{I} \cdot D_{B}}}, ecnu Z_{2} > 1 \end{cases}; \tag{46}$$

$$\gamma_0 = \left[1 + \exp\left(-\frac{U_m l_0^2}{D_{\Gamma}(l + X_0)}\right)\right];\tag{47}$$

где:

l - расстояние от выпуска до ближайшей границы района водопользования (контрольного створа), м;

 $U_{\scriptscriptstyle M}$ - скорость морского течения, соответствующая неблагоприятной гидрологической ситуации, м/с;

 x^* - параметр сопряжения участка двухмерной диффузии с участком трехмерной диффузии, м;

 x_0 - параметр сопряжения начального участка разбавления с основным участком;

 D_B и D_Γ - коэффициенты вертикальной и горизонтальной турбулентной диффузии соответственно, м 2 /с;

 H_{cp} - средняя глубина моря в месте выпуска, м;

 l_{H} - длина начального участка разбавления, м;

 γ_0 - параметр, учитывающий влияние ближайшего берега на кратность основного разбавления;

 l_0 - расстояние выпуска от берега, м;

 $\varphi(Z_1)$ - угол наклона оголовка выпуска.

Отличие формул (41) - (47) от аналогичных формул (24) - (30) связано с тем, что для прибрежной зоны моря по сравнению с водоемами характерна анизотропия коэффициентов турбулентной диффузии. При этом коэффициент горизонтальной диффузии, как правило, существенно больше, чем коэффициент вертикальной турбулентной диффузии.

В расчетах кратности основного разбавления при отсутствии данных о коэффициентах диффузии для конкретного района расположения выпуска следует использовать значение коэффициента горизонтальной турбулентной диффузии D_{Γ} , определяемое по формуле Л.Д. Пухтяра и Ю.С. Осипова:

$$D_{\Gamma} = 0.032 + 21.8 \cdot U_{\scriptscriptstyle M}^2; \tag{48}$$

Значение коэффициента вертикальной турбулентной диффузии можно принимать равным $D_B = 5 \cdot 10^{-4} \, \text{ M}^2/\text{c}$.

5.12. В расчетах кратности основного разбавления сточных вод для рассеивающих выпусков необходимо учитывать, что при рассеивающем выпуске

соседние струи влияют друг на друга в зоне основного разбавления, ослабляя эффект перемешивания. Согласно исследованиям Н.Н. Лапшева, кратность основного разбавления при сбросе сточных вод через линейный рассеивающий выпуск в море при направлении течения перпендикулярно к оси оголовка выпуска можно вычислить по формуле:

$$n_0 = \frac{7,28}{l_B} \sqrt{\frac{D_{\Gamma} l}{U_M}}; \tag{49}$$

где:

 l_B - длина рассеивающего оголовка выпуска, м.

Если значение n_0 , полученное из формулы (49), окажется меньше 2, кратность **основ**ного разбавления при рассеивающем выпуске сточных вод, для определения **НДС** можно не учитывать, полагая $n_0 = 1$.

Заместитель начальника отдела **регуля**торной деятельности — заведующий **сектор**ом охраны водных ресурсов

yerof-

Н.Н. Белоус

Приложение 1 к Методике разработки нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей (пункты 3.1., 3.4.)

Последовательность выполнения расчета величин НДС для отдельных выпусков сточных вод в водотоки

Номер формулы согласно Методике	Формула	Показа- тель	Величины
(1)	НДС = $q \cdot C_{HДC}$	q	 расход сточных вод, м³/ч (м³/с); допустимая концентрация загрязняющего
		$C_{H \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	вещества, мг/дм ³
(2)	$C_{HJC} = n \cdot (C_{\Pi JK} - C_{\Phi}) + C_{\Phi}$	$C_{\Pi ot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	- предельно допустимая концентрация (ПДК) загрязняющего вещества в воде водотока, мг/дм ³ ;
		C_{Φ}	- фоновая концентрация загрязняющего вещества в водотоке выше выпуска сточных вод, мг/дм ³ ;
		n	- кратность общего разбавления сточных вод в водотоке
(3)	$n = n_H \cdot n_O$	n_H	- кратность начального разбавления, определяемая по методу Н.Н. Лапшева;
		n_O	- кратность основного разбавления (основное разбавление, возникающее при перемещении воды от места выпуска к расчетному створу), определяемая по методу В.А.Фролова – И.Д. Родзиллера
	Метод Н.Н. Лапшева: для единичного напорного выпуска:	n_H	- определяется по номограмме для определения начального разбавления в потоке (рисунок 2 Приложения 3 Методики)
(4)	$\vartheta_{cm} \geq 4 \cdot \vartheta_p$	ϑ_{cm}	- скорость истечения сточных вод при $\vartheta_{cm} \ge 2,0\mathrm{m/c};$
		$artheta_p$	- скорость движения воды водотока, м/с
(5)	$\frac{\vartheta_0}{\vartheta_P} = \frac{\vartheta_P + 0.15}{\vartheta_P} - 1; \qquad m = \frac{\vartheta_P}{\vartheta_{cm}}$	ϑ_0	- скорость на оси струи, м/с;
	ϑ_P ϑ_P ϑ_{cm}	m	- отношение скоростей
	Для определения n_H (кратности начального разбавления)	$\frac{d}{d_0}$	- определяется по номограмме для определения диаметра струи в расчетном сечении (рисунок 1

			Приложения 3 Методики);
		d	- диаметр загрязненного пятна в граничном створе зоны начального разбавления, м;
		d_0	- диаметр выпуска, м
	для рассеивающего напорного выпуска:		
(6)	$d_0 = \sqrt{\frac{4 \cdot q_1}{\pi \cdot \vartheta_{cm} \cdot N_0}}$	d_0	- диаметр отверстия или оголовка рассеивающего выпуска, м;
		qI	- суммарный расход сточных вод, м ³ /с;
		N_0	- число выпускных отверстий оголовка выпуска
		Н	- средняя глубина реки, м.
			Определяется отношение $\frac{d}{d_0}$ и найденное
			значение d сравнивается с глубиной реки:
			- если $d < H$, то по рисунку 2 Приложения 3 Методики находится кратность начального разбавления n_H ;
			- если $d > H$ (случай стеснения струи) кратность начального разбавления n_H находится умножением n_H на поправочный коэффициент $f\left(\frac{H}{d}\right)$, который определяется из номограммы для определения поправочного коэффициента (рисунок 3 Приложения 3 Методики)
(7)	$l_H = \frac{d}{0.48 \cdot (1 - 3.12 \cdot m)}$	l_H	- расстояние до пограничного сечения зоны начального разбавления, м
(8)	$q_{\scriptscriptstyle CM} = n_H \cdot q2$	$q_{\scriptscriptstyle CM}$	- расход смеси сточных вод, и воды водотока в том же сечении, м ³ /с;
		<i>q</i> 2	- расход сточных вод, на выходе из отверстий или оголовков рассеивающего выпуска, м ³ /с
(9)	$C_{\rm cp} = C_{\rm \phi} + \frac{c_{cm} - c_{\rm \phi}}{n_H}$	$C_{ m cp}$	- средняя концентрация вещества в граничном сечении, мг/дм ³ ;
		C_{cm}	- концентрация загрязняющего вещества в сточных водах, мг/дм ³
(10)	$C_{\text{MaKC}} = \frac{c_{\text{cp}}}{0.428}$	Смакс	- максимальная концентрация в центре пятна примеси в сечении, мг/дм ³
	Метод В.А.Фролова — И.Д. Родзиллера:		
(11)	$n_0 = \frac{q + \gamma \cdot Q}{q}$	n_0	- кратность основного разбавления;
		γ	- коэффициент смешивания, показывающий,

		0	какая часть речного расхода смешивается со сточными водами, в максимально загрязненной струе расчетного створа;
		Q	- расчетный расход водотока, м ³ /с
(12)	$\gamma = \frac{1 - e^{-\alpha}\sqrt[3]{l}}{1 + \frac{Q}{q}e^{-\alpha}\sqrt[3]{l}}$	e	- основание натурального логарифма, $e = 2,72;$
	- · q ·	α	- коэффициент, учитывающий гидравлические условия в реке;
		l	- расстояние от выпуска до расчетного створа по фарватеру, м
(13)	$\alpha = \varphi \cdot \xi \cdot \sqrt[3]{\frac{D}{q}}$	φ	- коэффициент извилистости (отношение расстояния до контрольного створа по фарватеру к расстоянию по прямой);
		ζ	- коэффициент, зависящий от места выпуска сточных вод:
			$\xi = 1$ при выпуске у берега реки,
			$\xi = 1,5$ при выпуске в стрежень реки;
		D	- коэффициент турбулентной диффузии, м 2 /с
(14)	Для летнего времени:	g	- ускорение свободного падения, $g = 9.81 \text{ m/c}^2$;
	$D = \frac{g \cdot \vartheta \cdot H}{37 \cdot n_{\text{m}} \cdot \text{C}^2}$	θ	- средняя скорость течения реки, м/с;
	3. Am 3	Н	- средняя глубина реки, м;
		n_{u}	- коэффициент шероховатости ложа реки, определяемый по справочным данным (по таблице М.Ф. Срибного);
		C	- коэффициент Шези (${\it M}^{0.5}/c$), определяемый при ${\it H} \leq 5$ м
(15)	Формула Н.Н.Павловского: $C = \frac{R^{y}}{n_{\text{III}}}$	R ^y	- гидравлический радиус потока, M ($R \approx H$)
(16)	$y = 2.5\sqrt{n_{\text{III}}} - 0.13 - 0.75\sqrt{R}(\sqrt{n_{\text{III}}} - 0.1)$		
(17)	Для зимнего времени (периода ледостава):	R_{np}	- приведенное значение гидравлического радиуса, м;
	$D = \frac{g \cdot \vartheta \cdot R_{np}}{37 \cdot n_{np} \cdot c_{np}^2}$	n_{np}	- приведенное значение коэффициента шероховатости;
		C_{np}	- приведенное значение коэффициента Шези
(18)	$R_{np} = 0.5 \cdot H$		
(19)	$n_{np} = n_{\text{III}} \left[1 + \left(\frac{n_{_{II}}}{n_{_{III}}} \right)^{1,5} \right]^{0,67}$	$n_{\scriptscriptstyle A}$	- коэффициент шероховатости нижней поверхности льда, определяемый по

			справочным данным (по таблице П.Н. Белоконя)
(20)	$C_{np} = \frac{R_{np}^{ynp}}{n_{np}}$	C_{np}	- приведенное значение коэффициента Шези
(21)	$y_{np} = 2.5\sqrt{n_{np}} - 0.13 - 0.75\sqrt{R_{np}}(\sqrt{n_{np}} - 0.1)$		
(22)	Рассмотренный метод применяется при соблюдении неравенства: $0,0025 \leq \frac{q}{Q} \leq 0,1$		

Примечание: для повышения точности расчетов вместо средних значений ϑ , H, n_{uu} u C рекомендуется брать их значения в зоне непосредственного смешения сточной жидкости с речной водой

Коэффициенты шероховатости (n_{ul}) для открытых русел водотоков (по М.Ф. Срибному)

Характер ложа	n_{u}
Реки в весьма благоприятных условиях (чистое прямое ложе со свободным течением, без	0,025
обвалов и глубоких промоин)	0.020
Реки в благоприятных условиях течения	0,030
Реки в сравнительно благоприятных условиях, но с некоторым количеством камней и водорослей	0,035
Реки, имеющие сравнительно чистые русла, извилистые, с некоторыми неправильностями в направлении струй, или же прямые, но с неправильностями в рельефе дна (отмели, промоины, местами камни), некоторое увеличение количества водорослей	0,040
Русла (больших и средних рек) значительно засоренные, извилистые и частично заросшие, каменистые, с неспокойным течением. Поймы больших и средних рек, сравнительно разработанные, покрытые нормальным количеством растительности (травы, кустарник)	0,050
Порожистые участки равнинных рек. Галечно-валунные русла горного типа с неправильной поверхностью водного зеркала. Сравнительно заросшие, неровные, плохо разработанные поймы рек (промоины, кустарники, деревья, с наличием заводей)	0,067
Реки и поймы весьма заросшие (со слабым течением) с большими глубокими промоинами. Валунные, горного типа, русла с бурливым пенистым течением, с изрытой поверхностью водного зеркала (с летящими вверх брызгами воды)	0,080
Поймы такие же, как в предыдущей категории, но с сильно неправильным течением, заводями и пр. Горно-водопадного типа русла с крупновалунным строением ложа, перепады ярко выражены, пенистость настолько сильна, что вода, потеряв прозрачность, имеет белый цвет, шум потока доминирует над всеми остальными звуками.	0,100
Характеристика горных рек примерно такая же, как и в предыдущей категории. Реки болотного типа (заросли, кочки, во многих местах почти стоячая вода и пр.). Поймы с очень большими мертвыми пространствами, с местными углублениями, озерами и пр.	0,133

Коэффициенты шероховатости нижней поверхности льда (по П.Н. Белоконю)

Период	$n_{\scriptscriptstyle m II}$
Первые 10 суток после ледостава (первая - вторая декада декабря)	0,15 - 0,05
10 - 20 суток после ледостава (последняя декада декабря - начало января)	0,1 - 0,04
20 - 60 суток после ледостава (середина января - первая декада февраля)	0,05 - 0,03
60 - 80 суток после ледостава (конец февраля - начало марта)	0,04 - 0,015
80 - 110 суток после ледостава (март)	0,025 - 0,01

Примечание - При подпертых речных бьефах значения коэффициента шероховатости для первых 10 суток и от 10 до 20 суток после ледостава следует уменьшить на 15 %, а от 20 до 60 суток и от 60 до 80 суток после ледостава - на 35 %. Меньшие значения коэффициента шероховатости характерны для гладкого ледяного покрова, большие - для ледяного покрова с торосами и шугой.

Приложение 2 к Методике разработки нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей (пункт 3.1.)

ПРИМЕРНЫЙ РАСЧЕТ НОРМАТИВОВ ДОПУСТИМЫХ СБРОСОВ

(без учета разбавления и выполнения расчета фоновой концентрации)

1. Исходные данные:

- расход сточных вод для расчета нормативов допустимых сбросов $320940,46 \text{ m}^3/\text{год}$, $36,637 \text{ m}^3/\text{ч}$;
- водный объект, принимающий сточные воды **р. Кальмиус**, (категория водопользования водного объекта культурно-бытовая).

Качественные показатели сточных вод:

Наименование	Данные от 03.03.2020		Данные от	05.06.2020
вещества	$C_{\phi o H, M \Gamma} / д M^3$	$C_{\phi a \kappa \tau, M \Gamma} / д M^3$	$C_{\phi o H, M \Gamma} / д M^3$	$C_{\phi a \kappa \tau, M \Gamma} / д M^3$
хлорид-ион	отсутствует	99,58	400	400,88
		(среднегодовое		(среднегодовое
		значение за		значение за
		последние 3 года)		последние 3 года)

2. Расчет НДС

НДС = $\mathbf{q} \cdot \mathbf{C}_{\text{HЛC}}$: (может применяться для НДС_{расч}, НДС_{факт})

где: $q(M^3/4)$ – расход сточных вод,

 $C_{\rm HДC} \, ({\rm M} \Gamma / {\rm д} {\rm M}^3)$ – допустимая концентрация загрязняющего вещества.

Хлорид-ион

 $C_{\phi o H}$ - фоновая концентрация для р. Кальмиус не установлена

 $C_{\Pi \Pi K} = 350,0 \text{ мг/дм}^3$

Для расчетного НДС принимаем $C_{\rm HДC} = C_{\rm \PiДK} = 350,0 \ {\rm MF/дm}^3$

 $HДC_{pacy} = 350,0 \text{ мг/дм}^3 \cdot 36,637 \text{ м}^3/\text{ч} = 12822,95 \text{ г/час (112,329 т/год)}$

Фактическое содержание хлорид-иона в сточных водах (среднегодовое значение за последние 3 года) = $99,58 \, \text{мг/дм}^3$

 $HДC_{\phi a \kappa \tau} = 99,58 \text{ мг/дм}^3 \cdot 36,637 \text{ м}^3/\text{ч} = 3648,312 \text{ г/ч} (31,959 \text{ т/год})$

Так как фактический сброс меньше расчетного, для установления НДС принимаем фактический сброс:

 $C_{\rm HJC} = 99,58 \, \text{мг/дм}^3$

 $HДC = 99,58 \text{ мг/дм}^3 \cdot 36,637 \text{ м}^3/\text{ч} = 3648,312 \text{ г/ч} (31,959 \text{ т/год})$

Хлорид-ион

 $C_{\rm HДC}$ (п. 1.7. б))= 400,0 мг/дм³

 $HДC_{pacq} = 400,0 \text{ мг/дм}^3 \cdot 36,637 \text{ м}^3/\text{ч} = 14654,8 \text{ г/ч} (128,37 \text{ т/год})$

Фактическое содержание хлорид-иона в сточных водах (среднегодовое значение за последние 3 года) = $400.88 \, \mathrm{Mr/дm}^3$

 $HДC_{\phi a \kappa \tau} = 400,88 \text{ мг/дм}^3 \cdot 36,637 \text{ м}^3/\text{ч} = 14687,04 \text{ г/ч} (128,66 \text{ т/год})$

Так как расчетный НДС меньше фактического сброса, принимаем $C_{\mbox{\tiny HДC}}$

 $HДC = 400,0 \text{ мг/дм}^3 \cdot 36,637 \text{ м}^3/\text{ч} = 14654,8 \text{ г/ч} (128,37 \text{ т/год})$

Обобщенные расчетные показатели приводятся ниже (таблица 1).

Таблица 1 – Расчетные показатели нормативов допустимых сбросов

№ п/п	Наименование вещества (показателей)	С _{НДС} , мг/дм ³	НДС, г/ч	НДС, т/год

3. Сброс микроорганизмов в водный объект

НДС микроорганизмов устанавливаются согласно СанПин №4630-88 Санитарные правила и нормы охраны поверхностных вод от загрязнения.

4. Расчет суммации загрязняющих веществ

Для веществ, относящихся к 1-му и 2-му классам опасности при всех видах водопользования, НДС определяются так, чтобы для веществ с одинаковым лимитирующим признаком вредности (ЛПВ), содержащихся в воде водного объекта, сумма отношений концентраций каждого вещества к соответствующим ПДК не превышала 1.

Таблица 2 – Исходные данные

Nº/	Наименование	Санитарно-эпидемиологический норматив		
п/п	вещества	ЛПВ	Класс	ПДК, мг/дм ³
1	Нитрит-ионы	сан-токс.	2	3,3
2	Свинец	сан-токс.	2	0,03
3	Кадмий	сан-токс.	2	0,001

При совместном присутствии в водном объекте веществ, которые обладают суммированным действием, сумма их концентраций не должна превысить 1 при учёте формулы:

При наличии в сточных водах, таких веществ комбинированное их действие должно оцениваться по соотношению:

$$\frac{\mathsf{C}_{\mathsf{HДC1}}}{\mathsf{ПДK_1}} + \frac{\mathsf{C}_{\mathsf{HДC2}}}{\mathsf{ПДK_2}} + \cdots + \frac{\mathsf{C}_{\mathsf{HДC}i}}{\mathsf{ПДK}_i} \leq 1,$$

гле:

- $C_{\rm HДC1},~C_{\rm HДC2},~...C_{\rm HДCi}$ допустимые концентрации вредных веществ в выпуске сточных вод в водный объект;
 - $\Pi \coprod K_1$, $\Pi \coprod K_2$, ... $\Pi \coprod K_i$ установленные для этих веществ нормативы $\Pi \coprod K$.

Расчет суммации по санитарно-эпидемиологическим нормативам

Расчет суммации по санитарно-токсикологическому показателю вредности (нитритион, свинец, кадмий):

- концентрация нитрит-иона ($C_{\rm HДC1}$) 0,447 мг/дм³;
- концентрация свинца ($C_{\rm HJIC2}$) 0,00049 мг/дм³;

- концентрация кадмия ($C_{\rm HДC3}$) — 0,0003 мг/дм³; (0,447/3,3)+(0,00049/0,03)+(0,0003/0,001)= 0,135+0,016+0,3=0,451<1

Сумма отношений концентраций веществ с одинаковыми ЛПВ (санитарнотоксикологический) к соответствующим ПДК не превышает 1, условие пп. д) п. 1.7 Методики соблюдается.

Приложение 3 к Методике разработки нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей (пункт 3.3.)

Номограммы

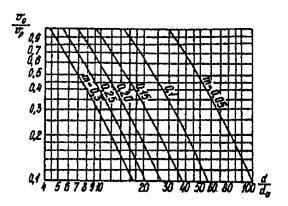


Рисунок 1 – Номограмма для определения диаметра струи в расчетном сечении

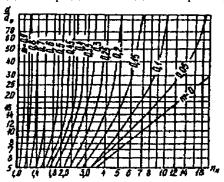


Рисунок 2 – Номограмма для определения начального разбавления в потоке

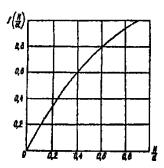


Рисунок 3 – Номограмма для определения поправочного коэффициента

Приложение 4 к Методике разработки нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей (пункт 4.1.)

Последовательность выполнения расчета величин НДС для отдельных выпусков сточных вод в водохранилища и озера

Номер форму лы соглас но Метод ике	Формула	Показа- тель	Величины
(1)	HДС = $q \cdot C_{HДC}$	q C_{HJC}	 расход сточных вод, м³/ч (м³/с); допустимая концентрация загрязняющего вещества, мг/дм³
(23)	$C_{ m HJC} = n \cdot (C_{ m \PiJK} - C_{ m \Phi}) + C_{ m \Phi}$	Спдк	- предельно допустимая концентрация (ПДК) загрязняющего вещества в воде водоема, мг/дм ³ ;
		C_{Φ}	- фоновая концентрация загрязняющего вещества в воде водоема, мг/дм ³ ;
		n	- кратность общего разбавления сточных вод в водоеме
(3)	$n = n_H \cdot n_O$	n_H	- кратность начального разбавления, определяемая по методу Н.Н. Лапшева;
		n_O	- кратность основного разбавления, определяемая по методу А.В. Караушева
	Метод Н.Н. Лапшева: для единичного напорного выпуска:	n_H	- определяется по номограмме для определения начального разбавления в потоке (рисунок 2 Приложения 3 Методики)
(4)	$\vartheta_{cm} \geq 4 \cdot \vartheta_p$	ϑ_{cm}	- скорость истечения сточных вод, при $\vartheta_{cm} \geq$ 2,0 м/с;
		$artheta_p$	- скорость движения воды водотока, м/с
(5)	$\frac{\vartheta_0}{\vartheta_P} = \frac{\vartheta_P + 0.15}{\vartheta_P} - 1; \qquad m = \frac{\vartheta_P}{\vartheta_{cm}}$	ϑ_0 m	- скорость на оси струи, м/с; - отношение скоростей
	Для определения n_H (кратности начального разбавления)	$\frac{d}{d_0}$	- определяется по номограмме для определения диаметра струи в расчетном сечении (рисунок 1 Приложения 3 Методики);

		d	- диаметр загрязненного пятна в граничном
		l u	створе зоны начального разбавления, м;
		d_0	- диаметр выпуска, м
	для рассеивающего напорного выпуска:		
(6)	$d_0 = \sqrt{\frac{4 \cdot q_1}{\pi \cdot \vartheta_{cm} \cdot N_0}}$	d_0	- диаметр отверстия или оголовка рассеивающего выпуска, м;
		qI	- суммарный расход сточных вод, м ³ /с;
		N_0	- число выпускных отверстий оголовка выпуска
		Н	- средняя глубина реки, м.
			Определяется отношение $\frac{d}{d_0}$ и найденное
			значение d сравнивается с глубиной реки:
			- если $d < H$, то по рисунку 2 Приложения 3 Методики находится кратность начального разбавления n_H ;
			- если $d > H$ (случай стеснения струи) кратность начального разбавления n_H находится умножением n_H на поправочный коэффициент $f\left(\frac{H}{d}\right)$, который определяется из номограммы для определения поправочного коэффициента (рисунок 3 Приложения 3 Методики)
(7)	$l_H = \frac{d}{0.48 \cdot (1 - 3.12 \cdot m)}$	l_H	- расстояние до пограничного сечения зоны начального разбавления, м
(8)	$q_{\scriptscriptstyle{CM}} = n_H \cdot q2$	$q_{\scriptscriptstyle CM}$	- расход смеси сточных вод, и воды водоема в том же сечении, м ³ /с;
		<i>q</i> 2	- расход сточных вод, на выходе из отверстий или оголовков рассеивающего выпуска, м ³ /с
(9)	$C_{\rm cp} = C_{\rm \phi} + \frac{c_{cm} - c_{\rm \phi}}{n_H}$	C_{cp}	- средняя концентрация вещества в граничном сечении, мг/дм ³ ;
		C_{cm}	- концентрация загрязняющего вещества в сточных водах, мг/дм ³
(10)	$C_{\text{MAKC}} = \frac{c_{\text{cp}}}{0,428}$	$C_{ ext{makc}}$	- максимальная концентрация в центре пятна примеси в этом сечении, мг/дм ³
	<u>Численный метод А.В. Караушева:</u>		

(24)	$n_0 = \frac{\varphi(Z_1)}{\gamma_0 \cdot Z_2}$	γ_0	- параметр, учитывающий влияние ближайшего берега на кратность основного разбавления
		$\varphi(Z_1)$	- угол наклона оголовка выпуска
(25)	$Z_1 = \frac{l + x_0}{x^* + x_0}$	<i>x</i> ₀ <i>x</i> *	 параметр сопряжения начального участка разбавления с основным участком; параметр сопряжения участка двухмерной диффузии с участком трехмерной диффузии
(26)	$Z_2 = \frac{q \cdot n_{_H}}{U_M \cdot H_{cp}^2}$	U_M	- характерная минимальная скорость течения в водоеме в месте сброса, соответствующая неблагоприятной гидрологической ситуации, м/с
(27)	$\varphi(Z_1) = \begin{cases} Z_1 \text{ если } Z_1 \le 1\\ \sqrt{Z_1} \text{ если } Z_1 > 1 \end{cases}$		- угол наклона оголовка выпуска
(28)	$x^* = \frac{U_{\scriptscriptstyle M} \cdot H_{cp}^2}{4\pi D} - x_0$	D	- коэффициент турбулентной диффузии, м 2 /с, определяемый по формулам (14) и (17) Методики, в которых вместо средней скорости течения, глубины и коэффициента шероховатости ложа реки принимаются, соответственно, характерная минимальная скорость течения в водоеме U_M , средняя глубина водоема вблизи выпуска H_{cp} и коэффициент шероховатости ложа водоема в зоне течения
(29)	$x_0 = egin{cases} rac{q^2 \cdot n_{\scriptscriptstyle H}^2}{4 \cdot \pi \cdot D \cdot U_{\scriptscriptstyle M} \cdot H_{cp}^2} - l_{\scriptscriptstyle H}, ec {\it nu} \ Z_2 \leq 1 \ rac{q \cdot n_{\scriptscriptstyle H}}{4 \pi D} - l_{\scriptscriptstyle H}, ec {\it nu} \ Z_2 > 1 \end{cases}$	l_H	- длина начального участка разбавления, рассчитываемая по формуле (7), м
(30)	$\gamma_0 = 1 + e^{\frac{U_M \cdot l_0^2}{\overline{D} \cdot (l + x_0)}}$	l _o	- расстояние выпуска от ближайшего берега, м; расстояние от выпуска до расчетного створа по фарватеру, м

Приложение 5 к Методике разработки нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей (пункт 5.3.)

Последовательность выполнения расчета величин НДС для отдельных выпусков сбросов в морские воды

Номер формулы согласно настоящей Методике	Формула	Показа- тель	Величины
(1)	H Д $C = q \cdot C_{H$ Д $C}$	q	- расход сточных вод, M^3/V (M^3/C);
		$C_{H\!J\!C}$	- допустимая концентрация загрязняющего вещества, мг/дм ³
(31)	$C_{\mathrm{H}\mathrm{JC}} = n \cdot \left(C_{\mathrm{\Pi}\mathrm{J}\mathrm{K}} - C_{\Phi} \right) + C_{\Phi}$	Спдк	- предельно допустимая концентрация (ПДК) загрязняющего вещества в морской воде, мг/дм ³ ;
		$C_{m{\Phi}}$	- фоновая концентрация вещества, характеризующая степень загрязнения морской воды данным веществом вне зоны влияния выпуска сточных вод, (на расстоянии более 5 км от выпуска), мг/дм ³ ;
		n	- кратность общего разбавления сточных вод, в море при их переносе течением от места выпуска до ближайшей границы морских районов водопользования
(3)	$n = n_H \cdot n_O$	n_H	- кратность начального разбавления;
		n_O	- кратность основного разбавления
(32)	$F_{cr} = \frac{\vartheta_{CT}}{}$	F_r	- число Фруда;
	$F_r = \frac{\vartheta_{CT}}{\sqrt{\frac{g \cdot d_0}{\rho_{\rm M}} \left \rho_{\rm M} - \rho_{\rm CT} \right }}$	$artheta_{ ext{CT}}$	- скорость истечения сточной, в том числе дренажной воды, из выпускного отверстия (м/с), вычисляемая по расходу сточных вод;
		g	- ускорение силы тяжести, равное 9,81 м/с;
		d_0	- диаметр выпускного отверстия, м;
		$ ho_{\scriptscriptstyle M}$	- плотность морской воды в месте сброса сточных вод, т/м ³ ;
		$ ho_{cm}$	- плотность сточной воды, т/м ³
(33)	$\vartheta_{\rm CT} = \frac{4 \cdot q}{N_0 \cdot \pi \cdot d_0^2}$	No	- число выпускных отверстий оголовка выпуска

(34)	Если $p_{cm} < \rho_{\rm M}$ и $F_r \le 1.12 \frac{H_B}{d_0}$, то n_H определяется по формуле Рама- Цедервала	H_B	- расстояние (по вертикали) от выпуска до поверхности моря, м
	Формула Рама-Цедервала:		
(35)	$n_H = 0.54 \cdot F_r \cdot \left(\frac{0.38 \cdot H_B}{d_0 \cdot F_r} + 0.66\right)^{1.67}$		
(36)	Если $p_{cm} > \rho_{\rm M}$ и $F_r \leq \frac{0.434 \cdot H_B}{d_0 \cdot (\sin \varphi)^{1.5}}$, то n_H определяется по методике H.H. Лапшева	φ	- угол истечения струй сточных вод, из выпускного отверстия относительно горизонта
	<u>Метод Н.Н. Лапшева:</u>		
(37)	$n_H = 0.524 \cdot \cos \varphi \cdot \sqrt{\sin \varphi} \cdot F_r \cdot F$	F	- параметр, зависящий от угла φ и определяемый согласно данным таблицы 1
	Если $p_{cm}<\rho_{_{\!M}}$, но не выполняется условие $F_r\leq 1{,}12\frac{H_B}{d_0}$, или $p_{cm}>\rho_{_{\!M}}$, но не выполняется условие $F_r\leq \frac{0{,}434{\cdot}H_B}{d_0{\cdot}(\sin\phi)^{1{,}5}}$, или $p_{cm}=\rho_{_{\!M\! }}$, то n_H определяется методом Н.Н. Лапшева		
	<u>Метод Н.Н. Лапшева:</u>		
(38)	$n_{\rm H} = \frac{0.425 \cdot \vartheta \text{cT} \cdot \text{f}}{0.051 + \vartheta \text{M}}$	θм	- характерная минимальная скорость течения морских вод в месте сброса, м/с;
		f	- параметр, учитывающий стеснение струи сточных вод, при их сбросе на мелководье
(39)	Параметр f определяется: $d = \vartheta_{cm} \cdot d_0 \cdot \sqrt{\frac{38,6 \cdot \left(1 - \frac{\vartheta_{_M}}{\vartheta_{cm}}\right)}{0,051 + \vartheta_{_M}}}$	d	- диаметр струи сточных вод, в конце зоны начального разбавления, м
	Если $d \le H$, то $f = 1$	Н	- глубина моря в месте сброса, м
(40)	Если $d \ge H$, то $f = 1,825 \frac{H}{d} - 0,781 \frac{H^2}{d^2} - 0,0038$		
	Если расчетная $n_H < 1$, то для дальнейших вычислений следует принять $n_H = 1$		

		ı	продолжение приложения 3
(41)	$n_0 = \frac{\varphi(Z_1)}{\gamma_0 \cdot Z_2}$	γ ₀	- параметр, учитывающий влияние ближайшего берега на кратность основного разбавления
(42)	$Z_1 = \frac{l + x_0}{x^* + x_0}$	l	- расстояние от выпуска до ближайшей границы района водопользования (контрольного створа), м;
		<i>x</i> *	- параметр сопряжения участка двухмерной диффузии с участком трехмерной диффузии, м;
		x_0	параметр сопряжения начального участка разбавления с основным участком
(43)	$Z_2 = rac{q \cdot n_{\scriptscriptstyle H} \sqrt{D_B}}{U_{\scriptscriptstyle M} \cdot H_{\scriptscriptstyle CD}^2 \sqrt{D_{\scriptscriptstyle \Gamma}}}$	D_B	- коэффициент вертикальной турбулентной диффузии, м²/c;
	- м сру 1	$D_{arGamma}$	- коэффициент горизонтальной турбулентной диффузии, M^2/c ;
		$U_{\scriptscriptstyle M}$	- скорость морского течения, соответствующая неблагоприятной гидрологической ситуации, м/с;
		H_{cp}	- средняя глубина моря в месте выпуска, м
(44)	$\varphi(Z_1) = \begin{cases} Z_1, ecлu \ Z_1 \leq 1 \\ \sqrt{Z_1}, ecлu \ Z_1 > 1 \end{cases}$	$\varphi(Z_1)$	- угол наклона оголовка выпуска
(45)	$x^* = \frac{U_{\scriptscriptstyle M} \cdot H_{cp}^2}{4 \cdot \pi \cdot D_B} - x_0$		
(46)	$= \begin{cases} \frac{q^2 \cdot n_{\scriptscriptstyle H}^2}{4 \cdot \pi \cdot D_{\scriptscriptstyle \Gamma} \cdot U_{\scriptscriptstyle M} \cdot H_{cp}^2} - l_{\scriptscriptstyle H}, ecлu Z_2 \leq 1 \\ \frac{q \cdot n_{\scriptscriptstyle H}}{4 \cdot \pi \sqrt{D_{\scriptscriptstyle \Gamma} D_{\scriptscriptstyle B}}}, ecлu Z_2 > 1 \end{cases}$	$l_{\scriptscriptstyle H}$	- длина начального участка разбавления, м
(47)	$\gamma_0 = \left[1 + \exp\left(-\frac{U_m l_0^2}{D_{\Gamma}(l + X_0)}\right)\right]$	l_0	- расстояние выпуска от берега, м
	Формула Л.Д. Пухтяра и Ю.С. Осипова:		
(48)	Если отсутствуют данные о коэффициентах диффузии для конкретного района расположения выпуска, то следует использовать D_{Γ} , определяемое по формуле Л.Д. Пухтяра и Ю.С. Осипова: $D_{\Gamma} = 0.032 + 21.8 \cdot U_{\scriptscriptstyle M}^2.$ Можно принимать $D_{\scriptscriptstyle B} = 5 \cdot 10^{-4}$ м²/с		

(49)	При сбросе сточных вод, через	l_B	- длина рассеивающего оголовка выпуска, м
	линейный рассеивающий выпуск в море при направлении течения		
	перпендикулярно к оси оголовка		
	выпуска, $n_0 = \frac{7,28}{l_B} \sqrt{\frac{D_{I} l}{U_M}}$.		
	Если $n_O < 2$, то n_O при рассеивающем		
	выпуске сточных вод, для		
	определения НДС можно не		
	учитывать, полагая $n_O=1$		
	j mibbaib, nomi un no = 1		

Приложение 6 к Методике разработки нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей (пункт 5.7.)

Значение функции F при различных углах наклона φ оголовка выпуска

Таблица 1 — Значение функции F при различных углах наклона ϕ оголовка выпуска:

φ	F	φ	F	φ	F
5°	1,00	35°	1,17	65°	2,01
10°	1,01	40°	1,23	70°	2,42
15°	1,03	45°	1,31	75°	3,12
20°	1,05	50°	1,42	80°	4,55
25°	1,08	55°	1,55	85°	8,91
30°	1,12	60°	1,74		